ABATIMIENTO
ABATIMIENTO DE LAS TRAZAS DE UN PLANO OBLICUO.
Abatiremos la traza vertical de un plano oblicuo Q sobre el plano horizontal de proyección. En realidad abatimos el plano en su totalidad pero es la traza vertical la que experimenta cambio gráficamente. La traza horizontal será la charnela del abatimiento permaneciendo por tanto invariable. Podemos trabajar de dos modos distintos:
Tomamos un punto A de la traza Q’ y lo abatimos sobre el plano horizontal en A1, uniéndolo con N, punto de concurrencia de las trazas sobre la línea de tierra, obtendremos la traza Q’1 abatida. Para abatir el punto A, trazamos por él una recta R de máxima pendiente del plano, esta recta corta a la traza horizontal del plano en el punto m.
Las proyecciones del punto a’ y a, forman junto a m, un triángulo rectángulo cuya hipotenusa, el segmento a’m, es la recta de máxima pendiente del plano y debe de coincidir tras el abatimiento, por ser una recta del plano Q, con el plano horizontal de proyección. La recta de máxima pendiente es pues radio de un arco de circunferencia de centro m que tendremos que trazar hasta ubicarla sobre el plano horizontal de proyección y localizar así en su extremo la posición de A abatido.
Para poder trazar esta circunferencia representada en la figura 6 en visión espacial, en proyecciones diédricas, abatimos previamente el mencionado triángulo sobre el plano horizontal de proyección tomando como charnela su cateto am. Para ello trazamos una recta paralela a la traza horizontal de Q o normal al propio cateto am por a, llevando sobre ella y a partir de a, la magnitud del cateto aa’ que no es sino la cota del punto A conocida, obtenemos de este modo el punto a’0, vértice del triángulo abatido. Uniendo a’0 con m, invariable en este abatimiento previo, obtenemos la hipotenusa que no es sino la recta R abatida sobre plano horizontal de proyección y radio del arco que tenemos que trazar.
Situado el triángulo sobre el plano horizontal de proyección podemos trazar ya el arco de centro m y radio m-a’0 hasta cortar a la prolongación del cateto am en A1 punto buscado. Uniendo el punto n, vértice de las trazas del plano Q en la línea de tierra con A1, obtenemos la traza vertical del plano Q abatida sobre el plano horizontal de proyección en Q’1. Fig. 7.
En cualquier abatimiento, todos los puntos del plano abatido describen circunferencias situadas en planos normales al plano a abatir. Estas circunferencia tienen su centro en la charnela y radios que van desde el punto de intersección entre la circunferencia y la charnela a los respectivos puntos. Si los puntos están situados en una de las trazas (la contraria a la charnela escogida), los radios mencionados serán rectas de máxima pendiente o inclinación según abatamos sobre el plano horizontal o vertical de proyección respectivamente.
ABATIMIENTO DE UN PUNTO SITUADO EN UN PLANO DADO Q.
Cuando hablamos de abatir un punto, nos referimos a abatir el plano que lo contiene para poder de este modo ver la situación del punto en alguno de los planos de proyección, en este caso sobre el plano horizontal. Primero comprobaremos mediante una recta del plano, en este caso la horizontal T, que el punto pertenece efectivamente al plano Q.
Hacemos pasar por el punto dado A, una recta de máxima pendiente R y a partir de la proyección horizontal del punto, trazamos un segmento paralelo a la traza horizontal del plano cuya magnitud sea igual a la COTA del punto A, uniendo el extremo de este segmento, a’o, con el punto m de intersección entre la proyección horizontal de R y la traza Q del plano, obtenemos la hipotenusa del triángulo rectángulo radio del giro según vimos en el ejercicio anterior, primer método. Haciendo centro en m y con radio igual a la trazamos un arco hasta cortar a la prolongación de la proyección horizontal de R obteniendo así la ubicación sobre el plano horizontal del punto A abatido, A1. Fig.10
En la figura 11, hemos abatido el punto A sobre el plano horizontal de proyección auxiliándonos de la traza vertical del plano abatida en Q’1 según el segundo método del ejercicio anterior. Para ello hemos abatido un punto de la traza vertical, v’ en v’1 que unido con n define Q’1. Trazamos una recta perpendicular por la proyección horizontal de A a Q y una recta paralela a t por v’1 (recta horizontal T abatida en T1), donde ambas se cortan tenemos A1.
El abatimiento de un punto sobre el plano vertical de proyección se realiza del mismo modo pero a partir de una recta de máxima inclinación en el primer caso y auxiliándonos de la traza horizontal del plano dado, abatida sobre el plano vertical de proyección.
ABATIMIENTO DE UN SEGMENTO SITUADO EN UN PLANO DADO.
Para abatir un segmento dado AB, situado en un plano Q, comprobaremos primero que efectivamente pertenece al plano mediante, por ejemplo, rectas horizontales del plano Q, T y S que pasen por los extremos del segmento A y B respectivamente.
Abatiremos los puntos A en A1 y B en B1, sobre el plano horizontal en este caso, como hemos visto en las figuras 10 y 11, uniendo A1 con B1 tendremos abatido sobre el plano horizontal de proyección el segmento dado y por tanto en verdadera magnitud.. En la figura 12 se realiza el ejercicio a partir de una recta de máxima pendiente del plano que pase por A y en la figura 13 a partir de la traza vertical Q’ del plano abatida.
ABATIMIENTO DE UNA SUPERFICIE PLANA SITUADA EN UN PLANO DADO.
Como en el caso del segmento resuelto anteriormente, lo primero es comprobar si realmente pertenece dicha superficie al plano. Para ello emplearemos rectas auxiliares, por ejemplo, horizontales.
La superficie a abatir será en el ejemplo un triángulo obtusángulo de vértices A, B y C. El procedimiento a seguir es exactamente el mismo que el empleado en el abatimiento de un punto o de un segmento vistos anteriormente. En el ejercicio de la figura 14 el abatimiento se efectúa sobre el plano horizontal de proyección y se resuelve el problema por el segundo método estudiado, es decir, auxiliándonos de la traza del plano que contiene a la superficie plana abatida sobre el plano horizontal de proyección.
Podemos simplificar el trazado haciendo uso de la relación de afinidad existente entre una de las proyecciones de la figura y la propia figura abatida como veremos en el ejercicio siguiente.
ABATIMIENTO DE UNA SUPERFICIE PLANA, SIMPLIPLIFICANDO MEDIANTE AFINIDAD.
Una afinidad queda determinada como sabemos si conocemos el eje de afinidad, la dirección y la relación de afinidad o un punto afín de la figura dada.
La relación de afinidad entre las proyecciones diédricas de una figura y la figura abatida sobre uno de su plano de proyección correspondiente tiene como eje de afinidad la charnela de abatimiento y dirección de afinidad normal a la charnela, solo necesitamos conocer un punto afín de una de las proyecciones de la figura que no es sino un punto abatido por cualquiera de los métodos estudiados.
En el ejercicio de la figura 15, abatimos el punto A en A1 y resolvemos B1 y C1 por afinidad siendo n y ñ puntos dobles de esta relación. Podemos observar que el trazado del ejercicio se simplifica notablemente.
DESABATIMIENTO DE UNA SUPERFICIE PLANA SOBRE UN PLANO DADO Q.
Se puede dar el caso en que necesitemos situar un punto, segmento o superficie ubicados en uno de los planos de proyección, sobre un plano dado Q, tendremos pues que desabatir estos elementos invirtiendo los pasos estudiados en los abatimientos.
En el ejemplo de la figura 16, conocida la figura A1, B1 C1 abatida sobre el plano horizontal de proyección y dado el plano Q, desabatiremos el triángulo. Podemos desabatir uno de sus vértices y calcular el resto mediante la afinidad existente entre la superficie abatida y la proyección horizontal de la figura contenida en el plano oblicuo Q.
Para desabatir uno de los tres vértices, en el ejemplo el vértice A1, y dejar de este modo definida la relación de afinidad, operamos de modo inverso al abatimiento de un punto, para ello abatimos previamente la traza vertical del plano sobre el plano horizontal de proyección y obtenemos Q’1, trazamos por A1 una recta normal y otra paralela a la traza horizontal del plano y obtenemos en la intersección de esta última con Q’1 el punto m1. Por m1 trazamos una recta normal a la traza Q hasta cortar a la línea de tierra en m desde donde trazamos otra recta paralela a Q hasta cortar a la normal trazada por A1 a Q, obtenemos de este modo la proyección horizontal del punto A, a.
En esta operación nos hemos auxiliado de una recta horizontal del plano que contiene a A1 y la hemos desabatido para obtener la proyección horizontal de A. Obtenido a, y establecida por tanto la afinidad, trazamos las proyecciones horizontales de B y C. Para calcular las proyecciones verticales de la figura contenida en el plano dado Q, nos auxiliamos de rectas horizontales del plano Q que contengan a las proyecciones a, b y c. Obtendremos de este modo los puntos a’, b’ y c’.
No hay comentarios:
Publicar un comentario